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ABSTRACT

We analyze the simulation result shown in Hotta & Kusano (2021) in which the solar-like dif-

ferential rotation is reproduced. The Sun is rotating differentially with the fast equator and the

slow pole. It is widely thought that the thermal convection maintains the differential rotation, but

recent high-resolution simulations tend to fail to reproduce the fast equator. This fact is an aspect

of one of the biggest problems in solar physics called the convective conundrum. Hotta & Kusano

(2021) succeed in reproducing the solar-like differential rotation without using any manipulation

with unprecedentedly high-resolution simulation. In this study, we analyze the simulation data to

understand the maintenance mechanism of the fast equator. Our analyses lead to conclusions that

are summarized as follows. 1. Superequipatition magnetic field is generated by the compression,

which can indirectly convert the massive internal energy to magnetic energy. 2. Extended subadi-

abatic region around the base of the convection zone and the efficient small-scale energy transport

suppresses large-scale convection energy. 3. Non-Taylor–Proudman differential rotation is main-

tained by the entropy gradient caused by the anisotropic latitudinal energy transport enhanced by

the magnetic field. 4. The fast equator is maintained by the meridional flow mainly caused by the

Maxwell stress. The Maxwell stress itself also has a role in the angular momentum transport for

fast near-surface equator (we call it the Punching ball effect). This study newly finds the role of the

magnetic field in the maintenance of differential rotation.

Keywords: Solar convection zone(1998) — Solar differential rotation(1996) — Solar dynamo(2001)

— Solar magnetic fields(1503)

1. INTRODUCTION

The Sun is rotating differentially, i.e., dif-

ferent latitudes have different rotation rates,

which is called differential rotation. The solar

rotation has a long observational history. In

1630, Christoph Scheiner found the different

rotation periods between latitudes using the

trajectory of the sunspots (Paternò 2010). In

modern-day observations, the Doppler effect is

used to measure the rotation rate (e.g., Howard

& Harvey 1970). After the appearance of he-

lioseismology that uses acoustic waves to de-

tect the internal structure of the Sun, the inter-

nal profile of the differential rotation has been

measured (Schou et al. 1998). Fig. 1 shows

one of the helioseismic results of the differen-

tial rotation Ω/2π from Howe et al. (2011),

where Ω is the angular velocity. While we ob-

serve interesting features of the shear layers,

i.e., tachocline at the base of the convection

zone and the near-surface shear layer, one of

the most prominent features of the solar dif-

ferential rotation is the fast equator and slow

pole. The equator and the polar region rotate

in 25 and 30 days, respectively.

It has been thought that thermal convec-

tion is a key to understanding the generation

mechanism of the solar differential rotation.
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Figure 1. Inversion of the helioseismic data from
Helioseismic and Magnetic Imager (HMI) satellite
for the angular velocity (Ω/2π) in the unit of nHz
(Howe et al. 2011). The solid lines show the values
from 340 to 460 nHz in 10 nHz increments.

Around the solar center, nuclear fusion gen-

erates thermal energy. The radiation trans-

ports the energy outward in the radiation zone

in the inner part of the solar interior (radia-

tion zone: < 0.71R�, where R� is the solar

radius). In the outer part (> 0.71R�, con-

vection zone), opacity increases, and the ra-

diation energy transport becomes inefficient.

Then, the thermal convection transports the

energy. Because of large Reynolds numbers,

the thermal convection is turbulent. The tur-

bulence is influenced by the Coriolis force and

becomes anisotropic. Angular momentum is

transported by the anisotropic turbulence, and

the large-scale flow is constructed. Because the

turbulence in the convection zone is highly non-

linear and chaotic, scientific research with nu-

merical simulation is an essential approach to

understanding the differential rotation.

By using the numerical simulations, the gen-

eration mechanism of the solar differential ro-

tation was thought to be understood at the be-

ginning of the 2000s, but recent high-resolution

simulations have crucial problems in reproduc-

ing the rotation observed. As a pioneering

work, Gilman (1977) performed solar global

convection simulations while ignoring the strat-

ification using the Boussinesq approximation.

After the standard model of the solar strati-

fication is established (Christensen-Dalsgaard

et al. 1996), global solar calculations with re-

alistic stratification and other solar parameters

are widely performed (Miesch et al. 2000; Brun

& Toomre 2002; Miesch et al. 2006; Brun et al.

2011; Käpylä et al. 2014; Hotta et al. 2015a).

In general, convection with a faster (slower) ro-

tation rate tends to show a fast equator (pole)

(Gastine et al. 2013). The essential control

parameter for the differential rotation is the

Rossby number Ro = v/(2Ω0L) (Miesch 2005;

Featherstone & Miesch 2015), where v, Ω0,

and L are the typical convection velocity, an-

gular velocity of the system, and typical spa-

tial scale of the convection, respectively. The

Rossby number measures the effect of the ro-

tation on the convection. A system with a low

Rossby number has rotationally constrained

convection, which is essential to reproduce a

fast equator. Low-resolution calculations in the

early years of the global solar convection stud-

ies were able to reproduce the solar-like dif-

ferential rotation (fast equator) because only

the large-scale convection is included in their

system. Higher-resolution calculations, how-

ever, have difficulties in reproducing it because

small-scale turbulence is introduced and the

effective convection scale, L, becomes small.

This fact is problematic because the real Sun

must have much smaller turbulence down to a

centimeter scale. Currently, there are three nu-

merical manipulation methods to produce the

solar-like differential rotation:

1. To increase the rotation rate (Brown

et al. 2008; Nelson et al. 2013; Hotta

2018).

2. To decrease the luminosity (Hotta et al.

2015a).

3. To adopt large viscosity and/or thermal
conductivity (Miesch et al. 2000, 2008;

Fan & Fang 2014; Hotta et al. 2016).

These manipulations aim to reduce the Rossby

number. Manipulation 1 increases Ω0 and di-

rectly reduces the Rossby number. In ma-

nipulation 2, the convection velocity v is re-

duced with smaller luminosity and energy flux.

Manipulation 3 decreases convection velocity v

and increases the effective spatial scale L with

the large diffusivities. Early calculations im-

plicitly adopt manipulation 3 because of their

low resolution. While Fan & Fang (2014) find

that the magnetic field may contribute to sup-

pressing the convection velocity and decreasing

the Rossby number, large thermal conductiv-

ity (∼ 3 × 1013 cm2 s−1) is still required to

maintain solar-like differential rotation. Be-

cause the solar angular velocity Ω0 and the so-
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lar luminosity L� are well-determined values,

we should not change these. The viscosity and

the thermal conductivity are extremely small

and cannot be reproduced in modern comput-

ers, and we should keep these as small as pos-

sible. We note that there should be larger tur-

bulent diffusivities, but these should be auto-

matically reproduced in three-dimensional sim-

ulations. In summary, we have not reproduced

the solar-like differential rotation without in-

troducing artificial effects and do not know the

valid reason why the fast equator is produced

in the Sun. The problem is that high resolu-

tion hinders the reproduction of the solar-like

differential rotation.

This problem is one of the most critical and

difficult problems in solar physics, called the

convective conundrum (O’Mara et al. 2016).

An observational estimate using helioseismol-

ogy suggests that the convective flow in nu-

merical simulations is much faster than in re-

ality. Hanasoge et al. (2012) show convective

energy spectra in large-scale (` < 60, where

` is the spherical harmonic degree). The ob-

servational estimate is more than two orders

of magnitude smaller than a simulation (Mi-

esch et al. 2008). We note that the helioseismic

result is still controversial, and another study

shows a consistent result with the simulation

(Greer et al. 2015). The problem of the previ-

ously presented differential rotation is one as-

pect of the convective conundrum because fast

convection flow leads to a large Rossby number

and a resulting fast pole. Regarding differen-

tial rotation, the observational results confirm

the existence of a fast equator; thus, we are

confident in the results obtained, but numeri-

cal simulations fail in reproducing the real solar

differential rotation. Consequently, the numer-

ical simulation has problems.

Hotta & Kusano (2021) (hereafter, HK21)

have solved the problem in the differential ro-

tation aspect of the convective conundrum. We

carried out unprecedented high-resolution sim-

ulations, and the solar-like differential rotation,

i.e., the fast equator, is reproduced without us-

ing any manipulation. In this study, we an-

alyze the simulation result to understand the

physical mechanism to maintain the solar-like

differential rotation, i.e., the fast equator.

2. MODEL

The simulations analyzed in this study

are introduced in HK211. We solve three-

dimensional magnetohydrodynamic equations

in the spherical geometry (r, θ, φ) using the

Yin-Yang grid (Kageyama & Sato 2004).

The radial computational domain extends

0.71R� < r < 0.96R�. The magnetohydro-

dynamic equations are

∂ρ1
∂t

= − 1

ξ2
∇ · (ρv) , (1)

∂

∂t
(ρv) = −∇ · (ρvv)−∇p1 − ρ1ger

+ 2ρv ×Ω0 +
1

4π
(∇×B)×B, (2)

∂B

∂t
= ∇× (v ×B) , (3)

ρT
∂s1
∂t

= −ρT (v · ∇) s+Qs, (4)

p1 =

(
∂p

∂ρ

)
s

ρ1 +

(
∂p

∂s

)
ρ

s1, (5)

where ρ, v, B, s, and p are the density, ve-

locity, magnetic field, specific entropy, and gas

pressure, respectively. er is the radial unit

vector. To deal with the small perturbation

ρ1/ρ0 ∼ p1/p0 ∼ T1/T0 ∼ 10−6, we separate

the quantities to the zeroth order spherically

symmetric values (subscript 0) and the per-

turbation from the background (subscript 1).

The zeroth order quantities and the gravita-

tional acceleration g are adopted from Model

S (Christensen-Dalsgaard et al. 1996). The lin-

earized equation of state is used for the pres-

sure to deal with the small perturbation. The

coefficient (∂p/∂ρ)s and (∂p/∂s)ρ are calcu-

lated with the OPAL repository (Rogers et al.

1996). We use the system rotation rate Ω0 of

the solar value, i.e., Ω0 = 2.6 × 10−6 s−1 with

Ω0 = Ω0 (cos θer − sin θeθ), where eθ is the

colatitudinal unit vector.

We use the reduced speed of sound technique

(RSST: Hotta et al. 2012b, 2015a). The effec-

tive speed of sound is reduced by a factor of ξ.

We keep the adiabatic reduced speed of sound

to 3 km s−1 throughout the convection zone.

The heating term Qs at the entropy equation

(eq. (4)) is expressed with two radial flux den-

1 Statistical data are available at https://doi.org/10.
5281/zenodo.5919257

https://doi.org/10.5281/zenodo.5919257
https://doi.org/10.5281/zenodo.5919257


4 Hotta, Kusano, & Shimada

sities as

Qs = − 1

r2
∂

∂r

[
r2 (Frad + Fart)

]
, (6)

Frad = −κr
dT0
dr

, (7)

Fart = L�

(
r

rmax

)2

exp

[
−
(
r − rmax

dart

)2
]
,

(8)

where Frad and Fart are the radiative flux and

the artificial energy flux. For the radiative en-

ergy flux Frad, we use the diffusion approxi-

mation, and the radiative diffusion coefficient

is adopted from Model S. Because we do not

include the photosphere where the radiation

extracts the energy, in this calculation, we

need an artificial energy flux around the top

boundary. We extract the solar luminosity L�
from the top boundary r = rmax = 0.96R�.

The depth of the cooling layer is defined as

dart = 2Hp(rmax), where Hp(rmax) = 9.46 Mm

is the pressure scale height at r = 0.96R�.

The magnetohydrodynamic equations are

solved with R2D2 (Radiation and RSST for

Deep Dynamics) code (Hotta et al. 2019;

Hotta & Iijima 2020, HK21) with the fourth-

order space centered difference and the four-

step Runge–Kutta time integration. To main-

tain the numerical stability, we use the slope-

limited artificial diffusivity suggested by Rem-

pel (2014) for all variables. We use h = 2

for the parameter for the artificial diffusivity

shown in eq. (10) of Rempel (2014).

Because the whole sphere is covered with the

Yin-Yang grid, we only need the radial bound-

ary condition. We adopt the stress-free and im-

penetrable boundary condition both at the top

and bottom boundaries for the flow. The mag-

netic field is radial and horizontal at the top

and the bottom boundaries, respectively. The

density and entropy perturbations are symmet-

ric about the radial boundaries.

We perform four cases, Low, Middle, High,

and High-HD. The basic parameters are sum-

marized in Table 1. The High and High-HD

cases have the same number of grid points. The

High-HD case does not include the magnetic

field. The magnetic field is included in the

other cases. The calculations continue for 4000

days. The period between 3600–4000 days is

used in the following analysis unless otherwise

noted. The typical time spacing ∆t = 100 s

and 3 million time steps are integrated for the

High case.

Table 1. Summary of calculations.

Case No. of Grids Magnetic field

Nr ×Nθ ×Nφ ×NYY
†

Low 96× 384× 1152× 2 Yes

Middle 192× 768× 2304× 2 Yes

High 384× 1536× 4608× 2 Yes

High-HD 384× 1536× 4608× 2 No
† We convert the Yin-Yang grid to the spherical
geometry for analyses. In the spherical geometry,

the number of grid is Nr × 2Nθ × 4Nφ/3

3. RESULT

3.1. Overall structure

In this subsection, the overall convection and

magnetic field are discussed. Figs. 2 – 7 show

the overall structure of the radial velocity and

the radial magnetic field. Figs. 2, 4, and 6

show the radial velocity vr at r = 0.95R�,

0.9R�, and 0.85R�, respectively. Figs. 3, 5,

and 7 show the radial magnetic field Br at

r = 0.95R�, 0.9R�, and 0.85R�, respectively.

The results from Low (panels a, d), Middle

(panels b, e), and High (panels c, f) cases

are shown in these figures. The panels d, e,

and f show zoomed views indicated by a white

dashed box in panel a. The radial velocity at

r = 0.95R� (Fig. 2) shows a typical convection

pattern, i.e., thin concentrated downflows sur-

rounded by broad upflows. Two effects cause

this pattern. The first effect is stratification.

Because the solar convection zone is gravita-

tionally stratified, the upper layer has a lower

gas pressure. A rising fluid parcel expands be-

cause of the stratification, while the descend-

ing parcel contracts. This asymmetry of the

upflows and downflows cause the typical con-

vection pattern. In addition, we should see a

boundary effect at this depth. A wall exists

at r = 0.96R� where the radial motion stops.

This process leads to diverging and converging

motions in the upflows and downflows, respec-

tively. The convection patterns in the Low case

(Figs. 2a and d) are similar to previous calcu-

lations (Miesch et al. 2008) i.e., the smallest

scale is the downflow lane. In the High case,

we can see smaller-scale structures even in the
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Figure 2. Radial velocity vr at r = 0.95R� in Low (panels a, d), Middle (panels b, e), and High (panels
c, f) cases are shown. The lower panels (d, e, f) show the subset of the calculation domain indicated by the
white dashed box in panel a. Movie is available at https://youtu.be/GXwnIIOJxvY.
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Figure 3. The radial magnetic field Br at r = 0.95R� is shown. The format is the same as Fig. 2. Movie
is available at https://youtu.be/ULPPKKGwJNw.

https://youtu.be/GXwnIIOJxvY
https://youtu.be/ULPPKKGwJNw
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Figure 4. The radial velocity vr at r = 0.9R� is shown. The format is the same as Fig. 2. Movie is
available at https://youtu.be/Ne0jsSCTXX4.
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Figure 5. The radial magnetic field Br at r = 0.9R� is shown. The format is the same as Fig. 2. Movie
is available at https://youtu.be/cYZqLUHNMt4.

https://youtu.be/Ne0jsSCTXX4
https://youtu.be/cYZqLUHNMt4
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Figure 6. The radial velocity vr at r = 0.85R� is shown. The format is the same as Fig. 2. Movie is
available at https://youtu.be/8zZW8OP9i7Y.
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Figure 7. The radial magnetic field Br at r = 0.85R� is shown. The format is the same as Fig. 2. Movie
is available at https://youtu.be/0C6XFdYDkKk.

https://youtu.be/8zZW8OP9i7Y
https://youtu.be/0C6XFdYDkKk
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downflow lanes (Fig. 2f). The banana-cell, the

north-south aligned convection cell, cannot be

seen in all the cases at this depth.

Fig. 3 shows the radial magnetic field Br at

r = 0.95R�. The magnetic field strength in-

creases from the Low case to the High case.

This tendency is also seen in the other depth

(see Figs. 5 and 7). In all the cases, the ra-

dial magnetic field is swept up to the down-

flow region. This concentration is also seen

in the previous calculation in the deep inte-

rior (Brun et al. 2004) and the photosphere

(Vögler et al. 2005). While the previous sim-

ulations and the Low case in this study typi-

cally show sheet-like magnetic flux aligned to

the downflow lane, we can occasionally ob-

serve blob-shaped magnetic flux (a notable one

is indicated by the dashed orange circle in

Fig. 3f). This structure shows significantly

superequipartition magnetic field strength and

low gas pressure. The convection is suppressed

in this region. This structure is important

for magnetic field generation (see discussion

at Subsection 3.5). At r = 0.9R�, the con-

vection shows larger-scale pattern. The small-

scale convection around the top boundary is

merged to construct the larger-scale while in-

creasing the pressure/density scale height in

the deep region (see Stein & Nordlund 1998;

Lord et al. 2014). The banana-cell-like feature

begins to appear in this depth. In the deeper

layer (r = 0.85R�, middle of the convection

zone), the flow pattern shows the banana-cell-

like features more clearly than the upper layers

(Fig. 6). In the mixing length theory, the con-

vection velocity vc scales as ρ0v
3
c ∼ L�/4πr

2

(Biermann 1948), where L� is the solar lu-

minosity. This dependence indicates that the

convection velocity decreases in the deeper lay-

ers with the larger density ρ0. The convection

time scale is τ ∼ Hp/vc. These relations mean

that the convection time scale increases in the

deeper layers by increasing the pressure scale

height and decreasing the convection velocity.

As a result, the convection tends to obey the

rotation influence (Coriolis force) and show the

banana-cell in the deep layers. The magnetic

field distribution is chaotic at this depth. The

strong magnetic field tends to locate at the

downflow plume, but the coincidence between

the downflow and the strong magnetic field is

worse than the upper layers.
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Figure 8. (a) Longitudinal RMS velocity (see
eq. (11)) and (b) the ratios of the magnetic en-
ergy to the kinetic energy are shown. The blue,
orange, and green colors show the results in Low,
Middle, High cases. The same color format is used
in the following figures unless otherwise noted.
The solid and dashed lines in panel a are ra-
dial vr(RMS), and horizontal vh(RMS) longitudinal
RMS velocities, where the horizontal velocity is

defined as vh =
√
v2θ + v2φ. The black dashed

line in panel b indicates the equiparition level, i.e.,
Emag(RMS)/Ekin(RMS) = 1.

3.2. Statistical properties of convection and

magnetic field

In this subsection, we discuss statistical prop-

erties of the convection and magnetic fields.

Here, we define statistical values of a quan-

tity Q, the longitudinal average 〈Q〉, the longi-

tudinal RMS (root-mean-square) Q′(RMS), and

the latitudinally averaged longitudinal RMS

Q(RMS) as follows.
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〈Q〉(r, θ) =
1

2π

∫ 2π

0

Qdφ (9)

Q′(RMS)(r, θ) =

√
1

2π

∫ 2π

0

(Q− 〈Q〉)2 dφ (10)

Q(RMS)(r) =

√
1

2

∫ π

0

Q′2(RMS) sin θdθ (11)

We note that we define spherical average Q̃

and spherical RMSQ(rms) in Subsection 3.6 dif-

ferently from the current definition.

Fig. 8 shows the longitudinal RMS velocity

(panel a) and ratio of the magnetic energy

Emag(RMS) to the kinetic energy Ekin(RMS),

where the energies are defined as:

Ekin(RMS) =
1

2
ρ0v

2
(RMS) (12)

Emag(RMS) =
B2

(RMS)

8π
(13)

Fig. 8a shows that the convection velocity is

suppressed in the higher resolution. This is a

general tendency of the high-resolution simula-

tions (e.g., Hotta et al. 2015b). The horizon-

tal velocity (dashed lines) is more suppressed

than the radial velocity (solid lines). A key

to understanding convection suppression is the

magnetic field. Fig. 8b shows the ratio of the

magnetic energy to the kinetic energy. While

in the Low case (blue line), the magnetic en-

ergy is smaller than the kinetic energy through-

out the convection zone, and we observe a

superequipartition magnetic field in the High

case (green line). The ratio exceeds 2.5 at max-

imum. This result indicates the strong influ-

ence of the magnetic field on the convective

flow. The reason why the High case has such a

strong magnetic field is discussed in Subsection

3.5, and the suppression mechanism of the con-

vection velocity by the magnetic field is shown

in Subsection 3.6.

3.3. Energy spectra

Fig. 9 shows the kinetic and magnetic en-

ergy spectra. We show the results at the lay-

ers at r = 0.73R� (panel a), 0.85R� (panel

b), and 0.9R� (panel c). See eqs. (6) and (7)

of HK21 for the definition of the energy spec-

tra. The tendency of the kinetic energy spectra

is almost the same among the different layers.
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Figure 9. The energy spectra at r = 0.73R�
(panel a), r = 0.85R� (panel b), and r = 0.9R�
(panel c) are shown. The solid and dotted lines
show the kinetic Ek and magnetic Em energies, re-
spectively.

While the large-scale (` < 10) energy does not

change from the Low to Middle cases (blue and

green lines, respectively), the energy is signif-

icantly reduced in the High case (green line).

This reduction is one of the main topics in this

paper. The relation between the kinetic and

magnetic energies depends on the resolution.

When the magnetic energy surpasses the ki-

netic energy, we expect an efficient small-scale

dynamo. In the Low case, while the magnetic

energy exceeds the kinetic energy in the deep

layer (r = 0.73R�, panel a) in the small scale

(` ∼ 40), this clear excess cannot be seen at

the shallower layer (r = 0.9R�, panel c). The

inefficient small-scale dynamo in a shallower
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layer is a common feature in the global dynamo

calculation (e.g., Hotta et al. 2014). Because

the shallower layer has a smaller energy injec-

tion scale of the convection because of a small

pressure/density scale height and a short time

scale for downward magnetic energy transport,

we need a high resolution to resolve the small-

scale dynamo (see discussion by Stein & Nord-

lund 2002; Vögler & Schüssler 2007). This

difficulty of the small-scale dynamo is solved

in the Middle case (orange line). While the

turnover scale depends on the layer depth, the

excess of the magnetic field in the small scales

is achieved in all the layers in the Middle case.

The situation drastically changes in the High

case (green line). The kinetic energy is reduced

in all the scales but especially in the large-scale

(` < 30). This significant suppression is seen

at all depths. As a result, the magnetic energy

exceeds or is comparable to the kinetic energy

in all scales.

3.4. Mean flows

Fig. 10 shows the differential rotation 〈Ω〉/2π
and the meridional flow 〈vm〉 = 〈vr〉er+〈vθ〉eθ.
The angular velocity is defined as Ω = Ω0 + Ω1

and Ω1 = vφ/(r sin θ). While the Low case

shows the fast pole (panel a), we reproduce the

fast equator in the High case as shown in HK21.

The reason why we have the fast equator in the

high-resolution calculation is discussed in Sub-

section 3.8. Also, the differential rotation suc-

ceeds in avoiding the Taylor–Proudman con-

straint, i.e., ∂Ω/∂z 6= 0, where z is the di-

rection of the rotational axis. This topic is

discussed in Subsection 3.7. The meridional

flow structure also depends on the resolution

(Figs. 10d, e, f). In the Low case, an anti-

clockwise flow is dominant, and we can see a

clear poleward flow around the surface. We can

observe a tiny clockwise cell around the base

of the convection zone. In the Middle case,

the meridional flow is separated around the

tangential cylinder of the base of the convec-

tion zone. Anti-clockwise and clockwise flow

cells are seen in low and high latitudes, respec-

tively. In the High case, a clockwise merid-

ional flow is dominant throughout the convec-

tion zone. The poleward flow around the base

of the convection zone is an essential feature

for the fast equator (see Subsection 3.8). The

poleward meridional flow around the surface

becomes weak in Middle and High cases. Note

that we can recover clear poleward meridional

flow when the top boundary is closer to the real

solar surface (Hotta et al. 2015a). In a high-

resolution calculation, we have already checked

this tendency and will introduce it in a future

publication (Hotta, Kusano & Sekii, in prep).

3.5. Magnetic field generation

In this subsection, we discuss the generation

mechanism of the magnetic field, especially the

superequiparition magnetic field achieved in

the High case (Fig. 8). We analyze the mag-

netic energy equation to investigate the mech-

anism. The equation is as follows.

∂

∂t

(
B2

8π

)
=−B

4π
· [(v · ∇)B]︸ ︷︷ ︸
Tm(ADV)

+
B

4π
· [(B · ∇)v]︸ ︷︷ ︸
Tm(STR)

−B
2

8π
(∇ · v)︸ ︷︷ ︸

Tm(CMP)

(14)

There are three contributions to change the

magnetic energy, which are advection Tm(ADV),

stretching Tm(STR), and compression Tm(CMP).

Fig. 11a shows the spherically averaged terms

in eq. (14). The solid lines indicate the contri-

bution from the advection Tm(ADV). Around

the top boundary, the strong magnetic field is

concentrated in the downflow region, and the

magnetic energy is transported downward. As

a result, the advection contribution is negative

and positive in the near-surface layer and the

deep convection zone, respectively. Because

the higher resolution shows a stronger mag-

netic field, this effect increases with increased

resolution. Next, the dashed lines are the con-

tribution by the stretching term Tm(STR). In

most of the convection zone, the amplitude

decreases in the higher resolutions. Because

the magnetic field increases, the Lorentz feed-

back is amplified, and the production rate of

the magnetic field decreases. Fig. 11b shows

the PDF between the radial velocity vr and

the stretching term Tm(STR). The result indi-

cates that the main contribution of the stretch-

ing occurs at the downflows (vr < 0). While

the net contribution of the stretching is posi-

tive, we can see a significant negative contri-

bution (energy transfer from magnetic to ki-
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Figure 10. Differential rotation 〈Ω〉/2π (panels a, b, c) and meridional flow 〈vθ〉 (panels d, e, and f) in Low
(panels a, d), Middle (panels b, e), and High (panels c, f) are shown. The black lines in the lower panels are
stream lines of the mass flux ρ0vm, see Appendix A). The solid and dashed lines indicate the clockwise and
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Figure 11. Magnetic field generation process is discussed. (a) Horizontally (spherically) averaged magnetic
energy production rate is shown. The solid, dashed, and dotted lines indicate the magnetic energy production
by the advection Tm(ADV), stretching Tm(STR), and compression Tm(CMP), respectively. The definition of each
term is shown in eq. (14). Panels b and c show PDFs for vr vs. Tm(STR) and vr and Tm(CMP) at r = 0.9R�,
respectively. The results for panels b and c are obtained from the High case.

netic energies) in the downflow region. The

tendency of the stretching on the resolution in-

dicates that the stretching is not responsible for

the superequipartition magnetic fields in the

High case. Finally, we discuss the compression

term Tm(CMP) shown with the dotted lines in

Fig. 11a. The amplitude of the compression

term monotonically increases with increased

resolution. Also, Fig. 11c shows the PDF be-

tween the radial velocity vr and the compres-

sion term Tm(CMP). Similar to the stretching,

the important compression occurs at the down-

flow region, but the negative contribution of

Tm(CMP) is not significant. The reason why

the fluid can overcome and compress the strong

magnetic field to amplify the field strength is
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Figure 13. PDFs for ρ′1 vs. B2/8π (panel a) and
s′1 vs. B2/8π (panel b) at r = 0.9R� from the
High case, respectively.

shown in Fig. 12. PDFs between the magnetic

pressure (energy) and perturbation gas pres-

sure are shown. The perturbation gas pressure

is defined as

p′1 = p1 − 〈p1〉, (15)

and is the deviation from the longitudinal av-

erage. The black dashed line in Fig. 12 indi-

cates p′1 = −B2/8π, i.e., the magnetic pres-

sure is balanced with the gas pressure. In

the Low case (Fig. 12a), the PDF distributes

rather uniformly. Even the small magnetic en-

ergy (∼ 108 dyn cm−2) has large perturbation

gas pressure (< −4 × 107 dyn cm−2). In the

High case (Fig. 12), the magnetic field strength

is amplified, and most of the strong magnetic

field distributes on the p′1 = −B2/8π line.

Also, the region with a weak magnetic field and

the low gas pressure disappears. These results

indicate that the gas pressure maintains the su-

perequipartition magnetic field realized in the

High case. Because the solar interior is in a low

Mach number situation, the internal energy is

huge compared with the kinetic and magnetic

energies. The region with the weak magnetic

field and the low gas pressure disappears in

the High case, indicating that the dynamo is

efficient enough to amplify all the small-scale

fields once the magnetic field enters the low gas

pressure region.

This process where the internal energy am-

plifies the magnetic field is similar to the ex-

plosion process (Moreno-Insertis et al. 1995;

Rempel & Schüssler 2001; Hotta et al. 2012a).

In the explosion process, the rising motion in

the superadiabatic stratification leads to an en-

tropy difference between the inside and outside

of the flux tube. Fig. 13 shows the PDFs be-

tween (a) perturbation density and magnetic

pressure and (b) perturbation entropy and the

magnetic pressure. While the density well cor-

relates with the magnetic pressure, the entropy

does not. This result indicates that the en-

tropy does not contribute to the amplification

and that the process achieved in this study is

different from the explosion process.

Also, as shown in Hotta et al. (2015b), the

absolute amplitude of entropy perturbation in-
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Figure 15. Explanation of compression mecha-
nism to generate the strong magnetic field in ther-
mal convection. The left panel shows the process
in a hydrodynamic case without the magnetic field.
The right panel shows a case with the magnetic
field. The circle indicates the fluid parcel. The
gray line in the right panel is a magnetic field line.
The gray arrow indicates the gas pressure from an
external fluid.
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Figure 16. Spectra of the magnetic energy pro-
duction rate at r = 0.9R� are shown.

creases with increased resolution. This increase

also occurs in this study (see Subsection 3.6),

and this tends to lower the gas pressure in

the downflow region (s1 < 0) because the lin-

earized equation of state is expressed as

p1
p0

= γ
ρ1
ρ0

+
s1
cv
. (16)

Again, Fig. 13b shows that the correlation be-

tween the entropy perturbation and the mag-

netic pressure is not good, and this fact indi-

cates that the increase of the entropy pertur-

bation does not contribute to amplifying the

magnetic field.

We also investigate the location of the strong

magnetic field amplification. Fig. 14 shows the

PDF between the gas pressure perturbation p′1
and the radial velocity vr. When we compare

the Low (panel a) and High (panel c) cases,

the low gas pressure region appears, especially

at the downflow region. Considering the result

shown, we can draw an overall picture of the

amplification process of the superequipartition

magnetic field. A schematic picture is shown

in Fig. 15. In a hydrodynamic case without

the magnetic field (left panel), when a fluid

parcel in the upper layer descends, the parcel

has low pressure compared with the external

fluid in the lower layer because of the strati-

fication. This pressure imbalance is instanta-

neously relaxed by the sound wave. In a mag-

netic case, especially with an efficient small-

scale dynamo like the High case, the situation

changes. When a fluid parcel goes down to the

lower layer, the small-scale magnetic field is in-

volved. The low gas pressure compared with

the external is maintained by the external gas

pressure and the magnetic pressure. Thus, the

magnetic energy is amplified by the compres-

sion, i.e., maintained by the internal energy.
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We also discuss the spatial scale of magnetic

field amplification. The spectral magnetic en-

ergy is expressed by

Êmag(`) =
1

8π
B̂(`) · B̂∗(`), (17)

where ̂ and ∗ denote the spherical harmonic

transform and the complex conjugate, respec-

tively. Then, the time evolution of Êmag(`) can

be written as (see details in Pietarila Graham

et al. 2010; Rempel 2014),

∂

∂t
Êmag(`) = T̂m(STR) + T̂m(ADV) + T̂m(CMP),

(18)

where

T̂m(STR) =
1

8π
B̂ · ̂(B · ∇)v

∗
+ c.c., (19)

T̂m(ADV) = − 1

8π
B̂ · ̂(v · ∇)B

∗
+ c.c., (20)

T̂m(CMP) = − 1

8π
B̂ · ̂(B∇ · v)

∗
+ c.c., (21)

where c.c. indicates the complex conjugate ex-

pression. Each term in the spectral magnetic

energy evolution at r = 0.9R� is shown in

Fig. 16. The magnetic energy transfer by

the advection T̂m(ADV) does not depend on

the resolution in a middle (` ∼ 102) to large

scale (` ∼ 1). The advection term contribu-

tion T̂m(ADV) is typically negative because the

downward magnetic energy transport is domi-

nant at this height. Around the smallest scale

in each resolution, T̂m(ADV) is positive. The

dominant magnetic energy production source is

the stretching T̂m(STR), but the production rate

decreases with increased resolution, especially

at the small-scale because the magnetic field

strength and the resulting Lorentz feedback in-

crease. Meanwhile, the compression contribu-

tion T̂m(CMP) increases with the resolution at

middle scale (` ∼ 100). The peak scale of the

compression does not depend on the resolution.

This result also supports our presented expla-

nation of the amplification mechanism of the

strong magnetic field. A complex small-scale

magnetic field is concentrated at the downflow

region. The field is strong enough to suppress

the turbulent stretching, but the compression

can still work.

3.6. Convection driving
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Figure 17. Superadiabaticity |δ| is shown. The
solid and dashed lines indicate the positive and
negative values of δ, respectively.
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Figure 18. The enthalpy (magenta), radiative
(orange), kinetic (green), and Poynting (blue)
fluxes are shown. The solid, dashed, and dotted
lines are the results from High, Middle, and Low
cases, respectively.

In this subsection, we discuss the driving

mechanism of the thermal convection. In par-

ticular, the mechanism in which the large-scale

convection is suppressed in the High case is dis-

cussed.

For the discussion in this subsection, we addi-

tionally define statistical values, spherical av-

erage Q̃, spherical RMS Q(rms), spherical cor-

relation [Q1Q2], and normalized spherical cor-
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in the High case is shown. Panels a, b, and c show
the enthalpy, kinetic, and Poyinting fluxes, respec-
tively.

relation Q1Q1 as follows.

Q̃(r) =
1

4π

∫
S

QdS (22)

Q(rms)(r) =

√
1

4π

∫
S

(
Q− Q̃

)2
dS (23)

[Q1Q2] (r) =
1

4π

∫
S

Q1Q2dS (24)

Q1Q2(r) =
[Q1Q2]

Q1(rms)Q2(rms)
(25)

We note that the spherical RMS Q(rms) defined

in eq. (23) is different from the longitudinal

RMS Q(RMS) defined in eq. (11). Fig. 17 shows

the superadiabaticity δ in different cases. The

superadiabaticity is defined such as:

δ = −Hp

cp

ds̃

dr
. (26)

We observe a thermal convectively stable re-

gion (δ < 0) in all cases. This layer is common

in an effectively high Prandtl number convec-

tion (Hotta 2017; Bekki et al. 2017; Käpylä

2019). The effective high Prandtl number is

achieved with the strong small-scale magnetic

field. In a high Prandtl number regime, the

thermal structure does not diffuse, and low en-

tropy material is accumulated at the base of

the convection zone. This process results in

the convectively stable region (δ < 0). Bekki

et al. (2017) shows that when the stable re-

gion is achieved around the base of the con-

vection zone, the large-scale flow is suppressed

because the convection driving scale in the

deeper layer is larger because of the large pres-

sure/density scale height. Because the stable

region expands and the absolute value of su-

peradiabaticity |δ| increases with the resolu-

tion, this effect should contribute to suppress-

ing the large-scale convection. The difference

of the superadiabaticity, however, between the

Low and Middle cases is larger than that be-

tween the Middle and High cases, while the

large-scale flow is significantly suppressed only

in the High case. This indicates that the main

reason for the large-scale suppression is not the

change of the superadiabaticity.

The basic value that determines the convec-

tion velocity is the energy flux. In the solar

convection zone, the energy flux is fixed by the

efficiency of the nuclear fusion. Fig. 18 shows

different types of fluxes. Definitions of the en-

thalpy Fe, kinetic Fk, Poyinting Fm, radiative
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Figure 20. Each panel shows (a) RMS radial velocity, (b) RMS temperature perturbation, (c) correlation
between vr and T1 (see eq. (24)), and (d) normalized correlation between vr and T1 (see eq. (25)).

Fr, and total Ft flux densities are (see Hotta

et al. 2014)

Fe =

(
e1 +

p1
ρ0
− p0
ρ20
ρ1

)
ρvr, (27)

Fk =
1

2
ρv2vr, (28)

Fm =
1

4π

[(
B2
θ +B2

φ

)
vr − (vθBθ + vφBφ)Br

]
,

(29)

Fr =Frad + Fart, (30)

Ft =Fe + Fk + Fm + Fr, (31)

where e is the internal energy. Frad and Fart

are defined at eqs. (7) and (8), respectively.

For convenience, the sum of the physics-based

radiation flux density Frad and an artificial en-

ergy flux density Fart is called the radiative flux

density Fr in this study.

In Fig. 18, we integrate the flux densities over

the full sphere and evaluate each corresponding

luminosity (flux). The enthalpy flux Le (ma-
genta) slightly decreases with increased reso-

lution. The decrease is more moderate than

expected from the convection velocity suppres-

sion (Fig. 8). In the mixing length theory, the

enthalpy flux scales as Le ∝ v3c , and the sup-

pression of the convection velocity vc should

have a strong influence on the enthalpy flux.

This deviation from the mixing length theory

is essential to investigate the suppression mech-

anism of the convection velocity. The slight de-

crease of the enthalpy flux can be compensated

for by the kinetic flux. As is usual, the kinetic

flux is negative because the downflow has larger

kinetic energy. This is reduced because of the

convection velocity suppression. The Poyint-

ing flux has minor contributions, but the flux

has a negative value. This downward Poynting

flux is also caused because the downflow re-

gion has larger magnetic energy. Fig. 19 shows

two-dimensional energy flux density distribu-

tion in the High case. The enthalpy flux den-

sity does not show a significant dependence on

the latitude. The kinetic energy flux density



Generation of solar-like differential rotation 17

1 10 100 10001015

1016

1017

|v r
|2

[c
m

3
s

2 ]

(a)

1 10 100 1000108

109

|T
1|2

[K
2

cm
]

(b)

1 10 100 1000
Spherical harmonic degree 

1011

1012

v r
T 1

[K
cm

2
s

1 ] 1.5

(c)

1 10 100 1000
Spherical harmonic degree 

0.0

0.5

1.0

S

(d)

Low
Middle
High

Figure 21. Panels show the spectra of (a) radial velocity, (b) temperature perturbation, (c) correlation
between radial velocity vr and temperature T1. Panel d shows normalized summed correlation S` defined
at eq. (33). All the data are calculated at r = 0.9R�. The dashed lines indicate spectra including m = 0
mode.

shows a larger absolute value at the equator

and pole. The Poynting flux density is nega-

tive in most convection zones, while it shows a

positive value around the equator.

In this paragraph, we discuss why the energy

flux (especially the enthalpy flux) is maintained

even with the suppressed convection velocity.

With the equation of state for the perfect gas,

the enthalpy flux density can be expressed as

Fe ∼ ρ0cp [vrT1] . (32)

Because the background density, ρ0, and heat

capacity at constant pressure, cp, do not

change in a low Mach number situation, the

correlation between the radial velocity, vr, and

the temperature perturbation, T1, determines

the enthalpy flux. Fig. 20 shows analysis to

this end. Fig. 20a shows the spherical RMS

for the radial velocity vr(rms). As discussed,

the convection velocity is suppressed. Fig. 20b

shows the spherical RMS for the temperature

perturbation T1(rms). T1(rms) increases with in-

creased resolution. The magnetic field is ampli-

fied in higher-resolution simulations that sup-

press the mixing between the up and downflow.

This process increases the temperature pertur-

bation (see also Hotta et al. 2015b). In ad-

dition, the latitudinal temperature difference

increases because of the presented process (see

Subsection 3.7). The increased latitudinal tem-

perature difference also contributes to increas-

ing the spherical RMS for the temperature

T1(rms). Fig. 20c shows the normalized spher-

ical correlation between the radial velocity vr
and the temperature perturbation T1. The cor-

relation decreases with the increase in the res-

olution. This correlation should be good when

the flow obeys the thermal convection. In the

high-resolution simulations, small-scale turbu-

lence, which does not behave as the thermal

convection, increases, and the correlation de-

creases. As a result, the dimensional correla-

tion [vrT1], which directly determines the en-

ergy flux, stays the same among different res-

olutions (Fig. 20). As a summary, the sup-

pressed convection velocity and the worse nor-

malized correlation are compensated by the in-
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Figure 22. Spectra of the kinetic energy pro-
duction rate at r = 0.9R� are shown. Panel b
shows the values shown in panel a normalized with√
v̂r v̂r

∗

crease in temperature perturbation to maintain

the energy flux.

We also discuss the energy flux from the view-

point of the spatial scale. Figs. 21a, b, and

c show the spectra of the radial velocity, the

temperature perturbation, and these correla-

tions, respectively. As discussed already, the

radial velocity is suppressed in all the scales

(Fig. 21a). The increase of the temperature

perturbation in the High case is mainly seen in

the small scales (` > 40: Fig. 21b). These re-

sults support our interpretation of the increase

of the temperature perturbation in the High

case. We expect the suppression of the mixing

by the magnetic field to increase the temper-

ature perturbation effectively. This process is

most effective on a small scale. The combina-

tion of the decrease of the radial velocity and

the increase of the temperature perturbation

in the small scales leads to a situation where

the correlation v̂rT1 in the small scale (` > 40)

stays the same (Fig. 21c). In addition, the

higher-resolution calculation has a long tail of

the correlation on a smaller scale. This result

indicates that a significant fraction of the en-

ergy is transported by the small-scale turbu-

lence in the High case. To evaluate the impor-

tance of the small-scale in energy transport, we

calculate a value S` defined as follows.

S` =

`max∑
`′=`

v̂rT1(`′)

`max∑
`′=0

v̂rT1(`′)

(33)

S` shows the fraction of the correlation from

` to `max to the total correlation. Fig. 21d

shows the dependence of S` on the resolution.

S` reaches unity around ` ∼ 5 in the Low and

Middle cases, while ` ∼ 20 is enough for S`
to reach unity in the High case. This indi-

cates that in the High case, a significant frac-

tion of the energy is transported by the mid-

dle to small scales (` > 20), and the large-scale

cannot transport the energy. We conclude that

this is the main reason why the large-scale con-

vection is suppressed in the High case.

We also investigate the convection driving

mechanism in the viewpoint of the scale. In

the analyses, we assume the background den-

sity is constant in time. Similar to the spectral

magnetic energy Êmag discussed in Subsection

3.5, the spectral kinetic energy Êkin evolution

equation can be written such as:

∂

∂t
Êkin = T̂k(ADV) + T̂k(BUO) + T̂k(LOR), (34)

where

T̂k(ADV) = −1

2
ρ0v̂ · v̂ · ∇v

∗
+ c.c., (35)

T̂k(BUO) = −1

2
ρ0v̂ · ̂−ρ1g +∇p

∗
+ c.c., (36)

T̂k(LOR) =
1

8π
v̂ · ̂(∇×B)×B

∗
+ c.c.. (37)

The result at r = 0.9R� is shown in Fig. 22.

We note that while the Coriolis force should

affect the spectral analysis, the amplitude is 1–

2 orders of magnitude smaller than the other

values, and we do not include it in our discus-

sion. The general tendency is that the buoy-

ancy drives the thermal convection and the ad-

vection, and the Lorentz force reduces the ki-

netic energy in almost all the scales. Also,

both the energy production and the suppres-

sion on the large-scale is small in the High case.
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For all the contributions to the kinetic energy

transfer, the velocity is multiplied. In the High

case, the kinetic energy in the large-scale is re-

duced, and the reduction of the energy trans-

fer seems an obvious result. To investigate the

effective importance of the large-scale suppres-

sion, we normalize the kinetic energy transfer

by
√
v̂v̂∗ (Fig. 22b). The normalized kinetic

energy transfer by the buoyancy T̂k(BUO) is re-

duced only in the High case. We also observe

the suppression of the Lorentz force contribu-

tion. These results indicate that the suppres-

sion of the large-scale kinetic energy is caused

by the suppression of the buoyancy via change

of stratification (Fig. 17) and scale shift of the

energy flux (Fig. 21). The magnetic field on a

large scale does not directly contribute to the

large-scale suppression.

3.7. Meridional force balance

In this subsection, we discuss the force bal-

ance on the meridional plane, especially about

the Taylor–Proudman constraint. The dif-

ferential rotation in the High case does not

obey the Taylor–Proudman constraints, i.e.,

∂Ω/∂z 6= 0, where z indicates the direction

of the rotational axis. To address this as-

pect, we need to analyze the vorticity equation

(e.g., Miesch & Hindman 2011). The longitu-

dinal component of the vorticity equation in a

steady-state ∂/∂t = 0 is written as

−2r sin θΩ0
∂〈Ω1〉
∂z︸ ︷︷ ︸

PCOR

= 〈∇ × (v × ω)〉φ︸ ︷︷ ︸
PADV

+
g

ρ0r

(
∂ρ

∂s

)
p

∂〈s1〉
∂θ︸ ︷︷ ︸

PBAR

+

〈
∇×

[
1

4πρ0
(∇×B)×B

]〉
φ︸ ︷︷ ︸

PMAG

(38)

We show each term in the equation in Fig. 23.

To suppress realization noise, especially in

PADV ad PMAG, we use a Gaussian filter with

a width of 5×5 grid points. We also show the

spherically averaged 1D profile of each term

in Fig. 24. We use a Gaussian filter with a

width of five grid points also for the 1D pro-

file. The raw data are shown with transpar-

ent lines. The results clearly show that the

deviation from the Taylor–Proudman theorem

(PCOR) is mainly balanced by the baroclinic

term (PBAR). We see a significant deviation

from the Taylor–Proudman theorem around

the top boundary. This is maintained both

by the advection (PADV) and the magnetic

field (PMAG). While this tendency is impor-

tant to discuss the near-surface shear layer,

we leave this for our future publication for the

near-surface layer (Hotta, Kusano, & Sekii in

prep). In this paper, we focus on the discus-

sion about the Taylor–Proudman theorem in

the middle of the convection zone. The re-

sult shows that the Coriolis force is balanced

with the baroclinic term, i.e., the latitudinal

entropy gradient. Hotta (2018) argues that

the efficient small-scale dynamo and generated

magnetic field help construct the entropy gra-

dient. As shown in Subsection 3.6, the tem-

perature perturbation increases with increased

resolution. In addition, the convection veloc-

ity is reduced in the higher resolutions (Fig. 8).

The Coriolis force bends a warm upflow (cold

downflow) poleward (equatorward). Both the

high-resolution effects (increasing the tempera-

ture perturbation and reducing the convection

velocity) enhance this process. Fig. 25 shows

the entropy and the temperature distributions

in the High case. We succeed in reproducing

the negative entropy and temperature gradi-

ent in the whole convection zone. Miesch et al.

(2006) enforce the entropy gradient at the bot-

tom boundary to avoid the Taylor–Proudman

constraint (see also Miesch et al. 2008; Fan &

Fang 2014). Also, Brun et al. (2011) main-

tains the entropy gradient by a dynamical cou-

pling of the convection and radiation zones (see

also Rempel 2005). In their studies, maintain-

ing the negative entropy gradient in the near-

surface equator is difficult, and the differen-

tial rotation tends to be the Taylor–Proudman

type topology in the near-surface equator re-

gion (For example, see Figs. 10 and 13 of Brun

et al. 2011). In our simulations, the entropy

gradient is generated by the turbulent process

throughout the convection zone, and the differ-

ential rotation can avoid the Taylor–Proudman

constraint, which is consistent with the obser-

vations (e.g., Schou et al. 1998). Fig. 26 shows

the resolution dependence of the entropy and

the temperature gradient. It is clearly shown

that the entropy and the temperature gradient

increase with resolution. This result also indi-
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Figure 23. Each term in the vorticity equation is shown.
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genta (PMAG), and orange (PADV) lines show the
spherically averaged terms in the vorticity equa-
tion. The transparent lines indicate the raw data
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cates that the magnetic field maintains the en-

tropy and temperature gradients because the

magnetic strength increases with the resolu-

tion. The temperature difference between the

equator and the pole at the base of the convec-

tion zone is 8 K in the High case. This value

corresponds to the AB3 case in Miesch et al.

(2006) with which they argue their most solar-

like profile.

3.8. Angular momentum transport

This subsection discusses the angular mo-

mentum transport, and we explain why the

equator is rotating faster than the polar region.

To discuss the angular momentum transport,

we should start from the angular momentum

conservation law that is approximated as

∂

∂t
(ρ0〈L〉) = GREY +GMER +GMAG, (39)

where

GREY = −∇ ·
(
ρ0λ〈v′mv′φ〉

)
, (40)

GMER = −∇ · (ρ0〈vm〉〈L〉) , (41)

GMAG = −∇ ·
(
λ
〈BmBφ〉

4π

)
, (42)

and λ = r sin θ. L = λuφ = λvφ + λ2Ω0 is

the specific angular momentum. GREY, GMER,

and GMAG are the angular momentum by the
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longitudinal average and the spherical average, re-
spectively (see eqs. (9) and (22)).

turbulence, mean flow (meridional flow), and
magnetic field. We define Bm = Brer +Bθeθ.

Because the large-scale magnetic field 〈B〉 is

weak in this study, we do not divide the mag-

netic contribution GMAG to turbulent compo-

nent B′ and large-scale component 〈B〉.
At first, we discuss how to transport the an-

gular momentum equatorward in the High (and

Middle) cases. To this end, we evaluate the

temporal evolution of the latitudinal angular

momentum flux density at θ = π/4. The lati-

tudinal angular momentum flux densities are:

Ftur = ρ0λ〈v′θv′φ〉, (43)

Fmer = ρ0〈vθ〉〈L〉, (44)

Fmag = λ
〈BθBφ〉

4π
, (45)

Ftot = Ftur + Fmer + Fmag. (46)
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Figure 26. Latitudinal dependence of (a) en-
tropy and (b) temperature. The deviation from
the spherical averaged longitudinally.

These fluxes are radially averaged at θ = π/4

in Fig. 27. Although the turbulent angu-

lar momentum transport (orange line: Ftur)

is positive (equatorward) in all cases, the re-

sulting differential rotation is different in all

cases. This indicates that the equatorward an-

gular momentum transport cannot be the rea-

son why we have the fast equator in the High

case. A prominent difference can be seen in the

angular momentum transport by the merid-

ional flow (blue line: Fmer). Fmer is negative

(poleward) in the initial phase (< 600 day)

in all cases. This poleward angular momen-

tum transport leads to the fast pole in the ini-

tial phase (see Fig. 35 in Appendix C). While

Fmer stays almost negative in the Low case,

the other cases clearly show positive Fmer in

the latter phase. This is the reason why we

have a fast equator in the Middle and High

cases. Because of the low Mach number situa-
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tion, ∇ · (ρ0vm) = 0 is approximately satisfied.

This leads to
∫
ρ0vθrdr ∼ 0 at an arbitrary lat-

itude with the closed boundary condition for

the radial velocity. Because the specific angu-

lar momentum is

〈L〉 =r2 sin2 θ (〈Ω1〉+ Ω0) , (47)

deeper layers (small r) tend to have smaller

angular momentum than near-surface layers

(large r). This means that the prominent pole-

ward meridional flow around the base of the

convection zone results in the equatorward an-

gular momentum transport because the flow re-

quired equatorward return flow in the middle

of the convection zone. The poleward merid-

ional flow around the base of the convection

zone is the primary reason why we have the

fast equator in the High case.

Gyroscopic pumping is useful in understand-

ing the maintenance mechanism of the merid-

ional flow. Gyroscopic pumping is the angular

momentum conservation law in a steady-state.

ρ0〈vm〉 · ∇〈L〉 ∼ −∇ ·
(
ρ0λ〈v′mv′φ〉+ λ

〈BmBφ〉
4π

)
(48)

In this study and the solar case, the differen-

tial rotation is weak, i.e., Ω1/Ω0 ∼ 0.1 and the

angular momentum 〈L〉 does not change sig-

nificantly even after the differential rotation is

constructed. Thus, the gyroscopic pumping in-

dicates that the angular momentum transport

by the Reynolds stress and the magnetic field

determines the topology of the meridional flow.

Fig. 28 shows each term in eq. (39). From this

figure, we can discuss two topics: one is the

generation mechanism of the poleward merid-

ional flow around the base of the convection

zone, and the other is the acceleration mecha-

nism of the near-surface equator.

At first, we discuss the generation mechanism

of the meridional flow. Because of the poleward

meridional flow around the base of the con-

vection zone, the angular momentum increases

(Figs. 28e and f). This is compensated for

by the magnetic angular momentum transport

(GMAG: Figs. 28h and i). In other words, the

poleward meridional flow around the base of

the convection zone is maintained by the mag-

netic angular momentum transport. The mag-

netic angular momentum transport decreases

the angular momentum around the base of the

convection zone, and the poleward meridional

flow increases it as compensation. While the

turbulent angular momentum transport tends

to increase the angular momentum around the

base of the convection zone (Figs. 28a, b, and

c), this is not enough to compensate for the

decrease by the magnetic angular momentum

transport (see also Fig. 34 for the sum of GREY

and GMER).

As for the increase of the angular velocity in

the near-surface equator, the magnetic angu-

lar momentum has the main contribution. The

major difference in the differential rotation be-

tween the Middle and High cases is the angular

velocity in the near-surface equator (Fig. 10).

The High case has a large angular velocity

there, which is more consistent with the solar

observation. It is apparent that this increase in

the angular velocity in the High case is caused

by the magnetic angular momentum transport

(GMAG: Fig. 28i). In all cases, the near-surface

equator is accelerated by GMAG, but the ampli-

tude of GMAG increases because the magnetic

field strength increases with the resolution (see

Subsection 3.5).

In summary, the equatorward latitudinal an-

gular momentum transport is done by the

meridional flow constructed by the magnetic

angular momentum transport. To have the

large angular velocity in the near-surface equa-

tor, we need additional contributions by the

magnetic field, which is stronger in the higher

resolutions. For the angular momentum trans-

port, both the strength and correlation are im-

portant. We analyze the result in this regard

in the following paragraph.

Fig. 29 shows the correlation between the

velocities and the magnetic fields. For both

the Reynolds stress 〈v′iv′j〉 and the Maxwell

stress 〈BiBj〉, the main contribution is the

radial transport. The distributions of GREY

and GMAG are roughly explained by the radial

angular momentum transport. The Reynolds

stress transports the angular momentum ra-

dially inward, while the Maxwell stress trans-

ports it in the opposite direction. The radially

inward angular momentum transport is a usual

result with a high Rossby number (weak rota-

tional influence) situation (see Gastine et al.

2013; Featherstone & Miesch 2015; Hotta et al.

2015a). As explained in the previous para-

graph, the essential reason for the poleward

meridional flow around the base of the convec-
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tion zone and the large angular velocity around

the near-surface equator is the magnetic angu-

lar momentum transport. Fig. 29 shows that

the negative correlation 〈BrBφ〉, i.e., the ra-

dially outward magnetic angular momentum

transport, is responsible for both of these. The

radially outward transport decreases and in-

creases the angular momentum at the base and

the top of the convection zone, respectively.

The main possible reasons for the magnetic

field correlation are the shear and the align-

ment to the flow. The shear term of the induc-

tion equation is written as

∂Br
∂t

=
Bφ
r sin θ

∂vr
∂φ

+ [...], (49)

∂Bφ
∂t

=Br
∂vφ
∂r

+ [...]. (50)

Thus, the shear of the flow can correlate the

magnetic field components. In addition, the

magnetic induction equation in high conduc-

tivity limit is

∂B

∂t
= ∇× (v ×B) . (51)

This means that when the magnetic field is par-

allel to the velocity, v ×B = 0 and the mag-

netic field does not evolve more. Conversely,

the magnetic field tends to be parallel to the ve-

locity. To understand the origin of the negative

correlation of 〈BrBφ〉, Fig. 30 shows the PDF

of (a) BrBφ vs. ∂vr/∂φ/r sin θ, (b)BrBφ vs.

∂vθ/∂r, and (c) BrBφ vs. v′rv
′
φ at r = 0.9R� in

the High case. While we do not see clear corre-

lation between BrBφ and shears (Figs. 30a and

b), BrBφ and v′rv
′
φ correlate well. This indi-

cates that the origin of the negative 〈BrBφ〉 is

not the flow shear but the negative correlation

of velocities 〈v′rv′φ〉. Figs. 29a, b, and c show

that 〈v′rv′φ〉 is negative at all latitudes. This is

caused by the Coriolis force. The Coriolis force

in the longitudinal equation of motion is

∂vφ
∂t

= [...]− 2Ω0 (vr sin θ + vθ cos θ) . (52)

Thus, the radial velocity, which is the source

of the thermal convection, is bent by the Cori-

olis force and the negative 〈v′rv′φ〉 is caused.

Because the magnetic induction equation only

suggests that the magnetic field tends to be

parallel to the velocity, it is possible that

〈BrBφ〉 is the origin of the 〈v′rv′φ〉. To con-

firm the origin of 〈v′rv′φ〉, we compare the hydro

case (High-HD) and the magnetic case (High)

in Fig. 31 with PDFs. Fig. 31 shows PDFs of

(a) v′r vs. v′φ, (b) Br and Bφ from the High

case are shown. Fig. 31c shows the correlation

of v′r vs. v′φ from the High-HD case. Even in

the hydro case, we see a similar correlation be-

tween v′r and v′φ (Fig. 31c) to the magnetic case

(Fig. 31a). This result shows that the magnetic

field is not the main origin of 〈v′rv′φ〉, but the

velocity is the origin of 〈BrBφ〉.

4. SUMMARY AND DISCUSSION

We analyze the simulation data of Hotta &

Kusano (2021) in which the solar-like differ-

ential rotation, i.e., the fast equator and the

slow pole, is presented. Fig. 32 summarizes

our revealed processes for the fast equator. (a)

High resolution suppresses numerical diffusion

and enhances the amplification of the magnetic

field. The compression is the main mecha-

nism to generate the superequipartition mag-

netic field. Because the strong magnetic field

is balanced with the gas pressure, the inter-

nal energy is available for amplification. (b)

The Coriolis force causes the negative corre-

lation of velocities 〈v′rv′φ〉, which is typical in

the large Rossby number regime. (c) The mag-

netic field tends to be parallel to the flow and

also has a negative correlation 〈BrBφ〉 < 0.

This transports the angular momentum radi-

ally outward. We can simply think that the

radially outward magnetic angular momentum

transport is the back reaction to the Coriolis

force. We call it the Punching ball effect be-

cause the magnetic field behaves as if it is be-

ing punched by the Coriolis force. The Punch-

ing ball effect is the essential process and our

new finding for the fast equator. (d) Because of

the radially outward angular momentum trans-

port, the angular momentum around the base

of the convection zone decreases. To compen-

sate for the decrease, the meridional flow be-

comes poleward around the base of the convec-

tion zone. To satisfy the mass conservation,

an equatorward meridional flow at the mid-

dle of the convection zone is caused. Because

the specific angular momentum is larger at the

middle of the convection zone than at the base

with the same latitude, the equatorward flow

leads to the net equatorward angular momen-

tum transport by the meridional flow. (e) Both

the Maxwell stress (panel c) and the meridional

flow (panel d) are essential to the fast equa-
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r = 0.9R� in the High case, are shown.
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Figure 31. Correlations of (a) v′r vs. v′φ, (b) Br and Bφ from the High case are shown. Panel c shows the
correlation of v′r vs. v′φ from the High-HD case. All the data are at r = 0.9R�.

tor in the near-surface layer. A prominent dif-

ference between the Middle and High cases is

the angular velocity at the near-surface equa-

tor (see Figs. 10b and c). This difference is

caused by the magnetic field strength in these

two cases. In conclusion, we suggest that the

magnetic field has two roles in the construction

of differential rotation. One is the maintenance

of the meridional flow, the other is the angu-

lar momentum transport to maintain the fast

near-surface equator.

In the following subsections, we discuss the

remaining issues and our future perspective in

several aspects.

4.1. Magnetic field intensification

In this study, compression is an important

process to amplify the magnetic field. In the

process, we can use the internal energy, which

is about 106 times larger than the kinetic en-

ergy in the deep convection zone. We have

not reached numerical convergence, i.e., higher

resolutions show stronger magnetic field (see

Fig. 8b). Currently, we cannot conclude the

magnetic field strength in the real Sun, but it

is most probably stronger than our simulation

result. The strength may be determined by a

balance between the generation of compression

and the destruction by the small-scale turbu-

lence. At the same time, we do not expect that

the magnetic field strength in the real Sun is

much stronger than our simulation because our
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Figure 32. Summary explanation of the process for the fast equator.

differential rotation is similar to the observa-

tional results. In our simulation, the magnetic

field directly determines the differential rota-

tion topology. If our magnetic field strength

is completely different from reality, the differ-

ential rotation is also away from reality. This

is not the case in the simulation. We need to

perform higher-resolution simulations to reach

numerical convergence and to understand mag-

netic field strength in reality.

4.2. Convection suppression

Fig. 33 shows a comparison of kinetic en-

ergy spectra of the longitudinal velocity Eφ
between simulations and an observation. We

follow the definition of the spectra of Gizon &

Birch (2012), where∫
V
v2φ/2dV∫
V
dV

=
∑
`>0

Eφ
r
. (53)

To exclude the contribution of the differential

rotation, we exclude m = 0 mode, where m

is the azimuthal wavenumber. The integra-

tion is carried out in the whole computational

domain. The magenta line shows the result

from the High case in this study. The blue

line shows the result from Hotta et al. (2019).

In the calculation, the horizontal extent is re-

stricted to 200 Mm, but it covers the whole

convection zone vertically from the base to the

photosphere. As suggested by Hotta et al.

(2019), the existence of the photosphere does

not change the energy spectra in deeper lay-
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ers, and the magenta and blue lines are con-

sistent. The black line shows the result from

another global calculation (Miesch et al. 2008)

at r = 0.98R�. The orange line indicates the

upper limit suggested by the local helioseis-

mology (Hanasoge et al. 2012). While we still

have a large discrepancy between the simula-

tion and the observation, the difference is re-

laxed. In our simulation, the large-scale con-

vection is suppressed because the small-scale

turbulence can efficiently transport the energy.

Also, in this regard, the higher resolution pos-

sibly changes the result more. Meanwhile, re-

cently, the helioseismology results have been

revised (Proxauf 2021). Our simulation results

in the High case are highly consistent with the

revised result of Greer et al. (2015). Currently,

we cannot conclude if our convective velocity

is correct or not. A more detailed comparison

between simulations and observation is needed.

Miesch et al. (2012) evaluate the lower limit

of the convective velocity from the dynamical

balance for the differential rotation. The eval-

uated value is not consistent with the local he-

lioseismology (Hanasoge et al. 2012). In their

study, they do not consider the magnetic con-

tribution for the construction of the differential

rotation. In this study, we find that the mag-

netic field is a dominant contribution. This

means that the convection velocity has large

freedom. The Rossby number does not solely

determine the differential rotation. One re-

maining restriction on the convection velocity

is the energy flux. The solar luminosity L� is

determined; thus, there should be a lower limit

on the convection velocity to transport the re-

quired energy. Our simulation also shows that

the temperature perturbation increases with

the resolution. If the temperature perturba-

tion increases, the lower limit on the convec-

tive velocity should be relaxed. At the same

time, significantly large temperature perturba-

tion should be detected by the local helioseis-

mology with mean travel time. Future obser-

vations for the convection velocity as well as

the temperature perturbation will contribute

to solving the problem.

4.3. Meridional flow

Currently, the local helioseismology for the

meridional flow is still controversial. Zhao

et al. (2013) indicate the double cell flow with

the poleward meridional flow around the base

of the convection zone. On the other hand,

Gizon et al. (2020) show equatorward merid-

ional flow around the base. In this regard,

our result is more consistent with Zhao et al.

(2013)’s result. We should note that observa-

tions still have tiny sensitivity in the deep con-

vection zone because it requires long enough

separated two endpoints of ∆ ∼ 45 degree for

evaluating the travel time (Giles 2000). The

observation has not accomplished enough pre-

cise observations for these separated two end-

points. For example, Gizon et al. (2020) show

meridional flow results with and without the

data with ∆ > 30 degree, but the result does

not change. This indicates that the data with

∆ > 30 degree are not used for their inver-

sion because of the large error, and the equa-

torward meridional flow is caused by the con-

straint of the mass conservation. This result

indicates that we cannot conclude that our

meridional flow is inconsistent with Gizon et al.

(2020)’s result. We need observations from dif-

ferent viewing angles, such as the Solar Orbiter

(Müller et al. 2013) to understand the whole

topology of the meridional flow, which should

be of significant impact on the understanding

of the convection and magnetic fields in the so-

lar convection zone.



Generation of solar-like differential rotation 29

The authors thank Y. Bekki and K. Mori

for their comments on the manuscript. H.H.

is supported by JSPS KAKENHI grants

No. JP20K14510, JP21H04492, JP21H01124,

JP21H04497, and MEXT as a Program for

Promoting Researches on the Supercomputer

Fugaku (Toward a unified view of the universe:

from large-scale structures to planets, grant

no. 20351188). The results were obtained

using the Supercomputer Fugaku provided by

the RIKEN Center for Computational Science.

The authors are grateful to Rachel Howe for

giving us the HMI inversion data for the so-

lar differential rotation, S. Hanasoge, and M.

Miesch for providing the spectral data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Software: R2D2 (Hotta et al. 2019; Hotta

& Iijima 2020; Hotta & Kusano 2021)

REFERENCES

Bekki, Y., Hotta, H., & Yokoyama, T. 2017, ApJ,

851, 74, doi: 10.3847/1538-4357/aa9b7f

Biermann, L. 1948, ZA, 25, 135

Brown, B. P., Browning, M. K., Brun, A. S.,

Miesch, M. S., & Toomre, J. 2008, ApJ, 689,

1354, doi: 10.1086/592397

Brun, A. S., Miesch, M. S., & Toomre, J. 2004,

ApJ, 614, 1073, doi: 10.1086/423835

—. 2011, ApJ, 742, 79,

doi: 10.1088/0004-637X/742/2/79

Brun, A. S., & Toomre, J. 2002, ApJ, 570, 865,

doi: 10.1086/339228

Christensen-Dalsgaard, J., Dappen, W., Ajukov,

S. V., et al. 1996, Science, 272, 1286,

doi: 10.1126/science.272.5266.1286

Fan, Y., & Fang, F. 2014, ApJ, 789, 35,

doi: 10.1088/0004-637X/789/1/35

Featherstone, N. A., & Miesch, M. S. 2015, ApJ,

804, 67, doi: 10.1088/0004-637X/804/1/67

Gastine, T., Wicht, J., & Aurnou, J. M. 2013,

Icarus, 225, 156,

doi: 10.1016/j.icarus.2013.02.031

Giles, P. M. 2000, PhD thesis, STANFORD

UNIVERSITY

Gilman, P. A. 1977, Geophysical and

Astrophysical Fluid Dynamics, 8, 93,

doi: 10.1080/03091927708240373

Gizon, L., & Birch, A. C. 2012, Proceedings of

the National Academy of Science, 109, 11896,

doi: 10.1073/pnas.1208875109

Gizon, L., Cameron, R. H., Pourabdian, M., et al.

2020, Science, 368, 1469,

doi: 10.1126/science.aaz7119

Greer, B. J., Hindman, B. W., Featherstone,

N. A., & Toomre, J. 2015, ApJL, 803, L17,

doi: 10.1088/2041-8205/803/2/L17

Hanasoge, S. M., Duvall, T. L., & Sreenivasan,

K. R. 2012, Proceedings of the National

Academy of Science, 109, 11928,

doi: 10.1073/pnas.1206570109

Hotta, H. 2017, ApJ, 843, 52,

doi: 10.3847/1538-4357/aa784b

—. 2018, ApJL, 860, L24,

doi: 10.3847/2041-8213/aacafb

Hotta, H., & Iijima, H. 2020, MNRAS, 494, 2523,

doi: 10.1093/mnras/staa844

Hotta, H., Iijima, H., & Kusano, K. 2019, Science

Advances, 5, eaau2307,

doi: 10.1126/sciadv.aau2307

Hotta, H., & Kusano, K. 2021, Nature Astronomy,

5, 1100, doi: 10.1038/s41550-021-01459-0

Hotta, H., Rempel, M., & Yokoyama, T. 2012a,

ApJL, 759, L24,

doi: 10.1088/2041-8205/759/1/L24

—. 2014, ApJ, 786, 24,

doi: 10.1088/0004-637X/786/1/24

—. 2015a, ApJ, 798, 51,

doi: 10.1088/0004-637X/798/1/51

—. 2015b, ApJ, 803, 42,

doi: 10.1088/0004-637X/803/1/42

http://doi.org/10.3847/1538-4357/aa9b7f
http://doi.org/10.1086/592397
http://doi.org/10.1086/423835
http://doi.org/10.1088/0004-637X/742/2/79
http://doi.org/10.1086/339228
http://doi.org/10.1126/science.272.5266.1286
http://doi.org/10.1088/0004-637X/789/1/35
http://doi.org/10.1088/0004-637X/804/1/67
http://doi.org/10.1016/j.icarus.2013.02.031
http://doi.org/10.1080/03091927708240373
http://doi.org/10.1073/pnas.1208875109
http://doi.org/10.1126/science.aaz7119
http://doi.org/10.1088/2041-8205/803/2/L17
http://doi.org/10.1073/pnas.1206570109
http://doi.org/10.3847/1538-4357/aa784b
http://doi.org/10.3847/2041-8213/aacafb
http://doi.org/10.1093/mnras/staa844
http://doi.org/10.1126/sciadv.aau2307
http://doi.org/10.1038/s41550-021-01459-0
http://doi.org/10.1088/2041-8205/759/1/L24
http://doi.org/10.1088/0004-637X/786/1/24
http://doi.org/10.1088/0004-637X/798/1/51
http://doi.org/10.1088/0004-637X/803/1/42


30 Hotta, Kusano, & Shimada

—. 2016, Science, 351, 1427,

doi: 10.1126/science.aad1893

Hotta, H., Rempel, M., Yokoyama, T., Iida, Y., &

Fan, Y. 2012b, A&A, 539, A30,

doi: 10.1051/0004-6361/201118268

Howard, R., & Harvey, J. 1970, SoPh, 12, 23,

doi: 10.1007/BF02276562

Howe, R., Larson, T. P., Schou, J., et al. 2011, in

Journal of Physics Conference Series, Vol. 271,

GONG-SoHO 24: A New Era of Seismology of

the Sun and Solar-Like Stars, 012061,

doi: 10.1088/1742-6596/271/1/012061

Kageyama, A., & Sato, T. 2004, Geochemistry,

Geophysics, Geosystems, 5, Q09005,

doi: 10.1029/2004GC000734
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APPENDIX

A. STREAM FUNCTION

In this appendix, we explain our method to calculate the stream function. Because a low Mach

number situation is kept in our calculation, the meridional flow 〈vm〉 = 〈vr〉er + 〈vθ〉eθ should obey

the anelastic approximation ∇· (ρ0〈vm〉) ∼ 0. This indicates that the meridional flow can be written

as a stream function Ψ(r, θ) as follows.

ρ0〈vm〉 = ∇× (Ψeφ) (A1)

Taking the rotation of eq. (A1) leads to

∇× (ρ0〈vm〉) = −∇2 (Ψeφ) , (A2)

because ∇ · (Ψ(r, θ)eφ) = 0. Thus, we need to solve the Poisson equation of

[∇× (ρ0〈vm〉)]φ = −∇2Ψ +
Ψ

r2 sin2 θ
. (A3)

The solution of the Poission equation is a steady-state (∂/∂t = 0), and the solution of the diffusion

equation with a source term is as follows

∂Ψ

∂t
= ∇2Ψ− Ψ

r2 sin2 θ
− [∇× (ρ0〈vm〉)]φ . (A4)

We simply integrate eq. (A1) for the initial condition of eq. (A4). Then, we evolve eq. (A4) for

several time steps, and the solution reaches a steady-state. We use the obtained value for the stream

function used in Figs. 10 and 35.

B. GYROSCOPIC PUMPING
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Figure 34.

Fig. 34 shows −(GREY + GMAG) (see eqs. (40) and (42) for the definitions). While these values

fluctuate much because of the nature of turbulent flow and the magnetic field, we certainly confirm

that GREY+GMAG is balanced with GMER (Figs. 28g, h, and i). Fig. 34 indicates that the gyroscopic

pumping including the magnetic field (eq. (48)) is at least roughly accomplished in our analyzed

period in all cases.
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C. MEAN FLOWS IN AN INITIAL PHASE

Fig. 35 shows the differential rotation and the meridional flow in an initial phase (200–600 days).

While we can reproduce the fast equator in the High case in the latter phase (Fig. 10), all cases

show the fast pole in the initial phase. During the long calculation, the magnetic field evolves and

is amplified, and then the fast equator is constructed in the final steady phase in the High case.
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Figure 35. Format is the same as Fig. 10, but the time average is between t = 200 to 600 day.
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